Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(3-Methylbenzenesulfonamido)phenyl 3-methylbenzenesulfonate

Belal O. Al-Najjar, ${ }^{\text {a }}$ Tengku Sifzizul Tengku Muhammad, ${ }^{\text {b,c }}$ Habibah A. Wahab, ${ }^{\text {a }} \ddagger$ Mohd Mustaqim Rosli ${ }^{\text {d }}$ and Hoong-Kun Fun ${ }^{\text {d*}}$ §

${ }^{\text {a }}$ Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia, ${ }^{\mathbf{b}}$ Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, SAINS@USM, No. 10, 11900 Persiaran Bukit Jambul, Pulau Pinang, Malaysia, ${ }^{\mathbf{c}}$ Department of Biological Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, and ${ }^{\mathbf{d}}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun@usm.my

Received 30 November 2011; accepted 20 December 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; disorder in main residue; R factor $=0.031 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=27.6$.

The complete molecule of the title compound, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}_{2}$, is generated by a crystallographic twofold axis and the O atom and $\mathrm{N}-\mathrm{H}$ group attached to the central benzene ring are statistically disordered. The dihedral angle between the central and terminal benzene rings is $56.91(5)^{\circ}$ and that between the terminal benzene rings is $29.80(5)^{\circ}$. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding links the molecules into sheets lying parallel to the $a b$ plane.

Related literature

For the biological properties of sulfonyl derivatives, see: Supuran et al. (2003). For a related structure, see: Sinha et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer (1986).

Experimental

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}_{2}$
$M_{r}=417.48$
Monoclinic, $C 2 /$ c
$a=14.4352$ (1) \AA
$b=9.1250$ (1) \AA
$c=15.4402(2) \AA$
$\beta=109.700(1)^{\circ}$
$V=1914.76$ (4) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.31 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.41 \times 0.34 \times 0.25 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.883, T_{\text {max }}=0.926$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031 \quad 128$ parameters
$w R\left(F^{2}\right)=0.090 \quad \mathrm{H}$-atom parameters constrained
$S=1.08$
3533 reflections
$\Delta \rho_{\text {max }}=0.46 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.40 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	1.02	1.97	$2.9854(11)$	178
Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.				

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HAW gratefully acknowledges the Malaysian Ministry of Science, Technology and Innovation for the synthesis work funded by grant Nos. 311/IFN/69230112 and 304/PFARMASI/ 650545/I121. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6544).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sinha, S., Osman, H., Wahab, H. A., Hemamalini, M. \& Fun, H.-K. (2011). Acta Cryst. E67, o3275.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Supuran, C. T., Casini, A. \& Scozzafava, A. (2003). Med. Res. Rev. 23, 535-558.

[^0]
supplementary materials

4-(3-Methylbenzenesulfonamido)phenyl 3-methylbenzenesulfonate

B. O. Al-Najjar, T. S. Tengku Muhammad, H. A. Wahab, M. M. Rosli and H.-K. Fun

Comment

Sulfonyl compounds have attracted our interest and many others, due to their varied biological activities (Sinha et al., 2011). Sulfonyl derivatives are found to be active against inflammation, various viral infections as well as cancer (Supuran et al., 2003).

The asymmetric unit of the title compound consists of half the molecule with the other half of the molecule being generated by a twofold axis. The crystal structure is disordered with the O 1 and the N 1 atoms attached at the same position with half occupancies each to the central phenyl ring (Fig 1 and Fig 2). All parameters in (I) are within normal ranges. The dihedral angle between $\mathrm{C} 1 / \mathrm{C} 6$ and $\mathrm{C} 8-\mathrm{C} 12 / \mathrm{C} 8 \mathrm{a}-\mathrm{C} 12 a$ is $56.91(5)^{\circ}$ whereas the dihedral angle between $\mathrm{C} 1-\mathrm{C} 6$ and C1a-C6a is $29.80(5)^{\circ}$. In the crystal structure, (Fig. 3), N1—H1 $\cdots{ }^{\text {O }}{ }^{\mathrm{i}}$ hydrogen bonds (Table 1) link the molecules into infinite layers parallel to $a b$-plane.

Experimental

0.02 mole of m-toluenesulfonyl chloride was added to 0.01 mole of p-aminophenol dissolved in pyridine. The reaction mixture was then neutralized by adding hydrochloric acid. The precipitate formed was dissolved in 5% aqueous sodium hydroxide and the sulfonamide recovered by adding 1:1 hydrochloric acid slowly. Re-crystallization of the product by ethanol gave colourless blocks of the title compound.

Refinement

N bound H atom is located from a difference Fourier maps and refined using a riding model. The remaining H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(C$-methyl). A rotating group model was applied to the methyl groups. The crystal structure is disordered with N1 and O1 occupying the same phenyl position with refined site of occupancies closed to 0.5 . In the final refinement, the ratio was fixed at half occupancy.

Figures

Fig. 1. A disorder component of the structure with 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

supplementary materials

Fig. 2. The other disorder component of the structure with 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 3. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

4-(3-Methylbenzenesulfonamido)phenyl 3-methylbenzenesulfonate

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}_{2}$
$M_{r}=417.48$
Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=14.4352$ (1) \AA
$b=9.1250(1) \AA$
$c=15.4402(2) \AA$
$\beta=109.700(1)^{\circ}$
$V=1914.76$ (4) \AA^{3}
$Z=4$
$F(000)=872$
$D_{\mathrm{x}}=1.448 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9887 reflections
$\theta=2.7-32.8^{\circ}$
$\mu=0.31 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.41 \times 0.34 \times 0.25 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.883, T_{\text {max }}=0.926$
21937 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.090$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$S=1.08$

3533 reflections
128 parameters
0 restraints

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0485 P)^{2}+1.0937 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.40 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$	Occ. (<1)
S1	$0.261632(15)$	$0.38804(2)$	$0.813408(15)$	$0.01868(7)$	
O1	$0.30077(5)$	$0.33201(8)$	$0.73257(5)$	$0.01910(13)$	0.50
N1	$0.30077(5)$	$0.33201(8)$	$0.73257(5)$	$0.01910(13)$	0.50
H1	0.2719	0.2309	0.7120	0.023^{*}	0.50
O2	$0.15974(5)$	$0.34770(9)$	$0.78153(5)$	$0.02715(16)$	
O3	$0.28871(6)$	$0.53930(8)$	$0.83108(6)$	$0.02607(15)$	
C1	$0.43833(8)$	$0.12376(12)$	$1.06033(7)$	$0.02529(19)$	
H1A	0.4772	0.0678	1.1116	0.030^{*}	
C2	$0.46090(8)$	$0.27063(12)$	$1.05424(7)$	$0.0268(2)$	
H2A	0.5145	0.3140	1.1012	0.032^{*}	
C3	$0.40519(7)$	$0.35443(11)$	$0.97948(7)$	$0.02235(17)$	
H3A	0.4195	0.4552	0.9750	0.027^{*}	
C4	$0.32808(6)$	$0.28698(9)$	$0.91157(6)$	$0.01695(15)$	
C5	$0.30453(7)$	$0.14007(10)$	$0.91733(6)$	$0.01931(16)$	
H5A	0.2511	0.0969	0.8701	0.023^{*}	
C6	$0.35980(8)$	$0.05647(10)$	$0.99286(7)$	$0.02188(17)$	
C7	$0.33362(11)$	$-0.10114(11)$	$1.00160(9)$	$0.0333(2)$	
H7A	0.3116	-0.1471	0.9407	0.050^{*}	
H7B	0.2807	-0.1058	1.0279	0.050^{*}	
H7C	0.3915	-0.1531	1.0419	0.050^{*}	
C8	$0.40253(6)$	$0.33636(9)$	$0.74375(6)$	$0.01551(14)$	
C9	$0.45112(6)$	$0.20366(9)$	$0.74745(6)$	$0.01958(16)$	
H9A	0.4176	0.1138	0.7465	0.023^{*}	
C12	$0.45042(6)$	$0.46948(9)$	$0.74605(6)$	$0.01721(15)$	

0.021*

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.01452(11)$	$0.02118(11)$	$0.02237(11)$	$0.00479(7)$	$0.00888(8)$	$0.00390(7)$
O1	$0.0117(3)$	$0.0267(3)$	$0.0194(3)$	$0.0003(2)$	$0.0059(2)$	$0.0029(2)$
N1	$0.0117(3)$	$0.0267(3)$	$0.0194(3)$	$0.0003(2)$	$0.0059(2)$	$0.0029(2)$
O2	$0.0132(3)$	$0.0395(4)$	$0.0301(4)$	$0.0052(3)$	$0.0090(3)$	$0.0047(3)$
O3	$0.0290(4)$	$0.0177(3)$	$0.0358(4)$	$0.0067(3)$	$0.0166(3)$	$0.0039(3)$
C1	$0.0242(4)$	$0.0312(5)$	$0.0205(4)$	$0.0031(4)$	$0.0076(3)$	$0.0049(3)$
C2	$0.0220(4)$	$0.0330(5)$	$0.0220(4)$	$-0.0049(4)$	$0.0030(3)$	$-0.0008(4)$
C3	$0.0209(4)$	$0.0220(4)$	$0.0235(4)$	$-0.0041(3)$	$0.0066(3)$	$-0.0019(3)$
C4	$0.0160(3)$	$0.0172(3)$	$0.0188(3)$	$0.0010(3)$	$0.0074(3)$	$-0.0003(3)$
C5	$0.0208(4)$	$0.0180(4)$	$0.0201(4)$	$-0.0017(3)$	$0.0081(3)$	$-0.0016(3)$
C6	$0.0271(4)$	$0.0196(4)$	$0.0221(4)$	$0.0013(3)$	$0.0125(3)$	$0.0021(3)$
C7	$0.0497(7)$	$0.0203(4)$	$0.0344(5)$	$-0.0012(4)$	$0.0201(5)$	$0.0050(4)$
C8	$0.0119(3)$	$0.0183(3)$	$0.0161(3)$	$-0.0001(3)$	$0.0044(3)$	$0.0026(3)$
C9 93	$0.0171(4)$	$0.0143(3)$	$0.0236(4)$	$-0.0018(3)$	$0.0019(3)$	$0.0025(3)$
C12	$0.0149(3)$	$0.0150(3)$	$0.0221(4)$	$0.0011(3)$	$0.0068(3)$	$0.0000(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{S} 1-\mathrm{O} 2$	$1.4329(8)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.4354(8)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.6167(7)$
$\mathrm{S} 1-\mathrm{C} 4$	$1.7572(9)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.4206(10)$
$\mathrm{O} 1-\mathrm{H} 1$	1.0188
$\mathrm{C} 1-\mathrm{C} 2$	$1.3899(15)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.3968(15)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	$1.3922(14)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.3894(13)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9500
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	$119.64(5)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	$103.82(4)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 1$	$107.89(4)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 4$	$111.11(4)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 4$	$107.83(5)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 4$	$105.59(4)$
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{S} 1$	$120.90(6)$
C8-O1-H1	111.2
S1-O1-H1	108.3
C2-C1-C6	$121.55(9)$
C2-C1-H1A	119.2
C6-C1-H1A	119.2

$\mathrm{C} 4-\mathrm{C} 5$	$1.3931(12)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.3969(13)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9500
$\mathrm{C} 6-\mathrm{C} 7$	$1.5046(14)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9800
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9800
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9800
$\mathrm{C} 8-\mathrm{C} 9$	$1.3909(12)$
$\mathrm{C} 8-\mathrm{C} 12$	$1.3921(12)$
$\mathrm{C} 9-\mathrm{C} 9$	$1.3866(18)$
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9500
$\mathrm{C} 12-\mathrm{C} 12 \mathrm{i}$	$1.3949(16)$
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9500
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.72(9)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.1
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.1
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$118.30(9)$
C1-C6-C7	$121.23(9)$
C5-C6-C7	$120.45(10)$
C6-C7-H7A	109.5
C6-C7-H7B	109.5
H7A-C7-H7B	109.5
C6-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.17(9)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.32(9)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.92(8)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$118.94(7)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{S} 1$	$119.08(7)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1-\mathrm{C} 8$	$-172.37(7)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 1-\mathrm{C} 8$	$59.70(8)$
$\mathrm{C} 4-\mathrm{S} 1-\mathrm{O} 1-\mathrm{C} 8$	$-55.39(7)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.35(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.71(15)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.11(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$-176.24(8)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 3$	$-144.83(8)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 3$	$-11.90(9)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 3$	$103.24(8)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$	$37.75(8)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$	$170.68(7)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$	$-74.19(8)$

$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 12$	$121.29(8)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{O} 1$	$117.85(7)$
$\mathrm{C} 12-\mathrm{C} 8-\mathrm{O} 1$	$120.78(8)$
$\mathrm{C} 9-\mathrm{C} 9-\mathrm{C} 8$	$119.46(5)$
$\mathrm{C} 9-\mathrm{C} 9-\mathrm{H} 9 A$	120.3
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 A$	120.3
$\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 12^{\mathrm{i}}$	$119.23(5)$
$\mathrm{C} 8-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	120.4
$\mathrm{C} 12-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	120.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.44(13)$
$\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$176.91(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$1.03(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-177.82(10)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.63(14)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$178.23(9)$
$\mathrm{S} 1-\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9$	$-69.45(10)$
$\mathrm{S} 1-\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 12$	$-0.70(16)$
$\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 9^{\mathrm{i}}$	$176.01(10)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 9{ }^{\mathrm{i}}$	$-1.20(15)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 12^{\mathrm{i}}$	$-177.81(10)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 12^{\mathrm{i}}$	

Symmetry codes: (i) $-x+1, y,-z+3 / 2$.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{ii}}$	1.02	1.97	$2.9854(11)$	178

Hydrogen-bond geometry ($A,{ }^{\circ}$)

Symmetry codes: (ii) $-x+1 / 2, y-1 / 2,-z+3 / 2$.
supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

[^0]: \ddagger Additional correspondence author, e-mail: habibahw@usm.my.
 § Thomson Reuters ResearcherID: A-3561-2009.

